$ \huge{ \ \text{ Autor del blog } \ \mathbb{R}a\!\!\int\!\!{\alpha}{\varepsilon}\ell \ \ {\rm I\!R}{\acute{\textrm{a}}}\pi\partial{\in} z \ \ \mathbf{G}a\tau\varsigma\acute{\iota}@} \quad \mathbb{R}^2 \mathbb{G} $


El aprendizaje ocurre cuando alquien quiere aprender, no cuando alguien quiere enseñar. «Roger Schanck»


Si quieres aprender enseña. «Cicerón»


Cuando uno enseña, dos aprenden. «Robert Heinlein»


Si la gente no cree que las matemáticas son sencillas, es sólo porque no se da cuenta de lo complicada que es la vida. «John Von Neumann»

«George Polya» dijo una vez: «Es mejor resolver un problema de 5 formas diferentes que resolver 5 problemas de la misma forma».

En este blog está escrito en $\Large \LaTeX $ usando Powered by MathJax

El humor es importante.

Matemáticas, humor y +.

Hay que tomarse siempre las cosas con un poco de humor ... con mucho humor y más humor ¿Quién no ha pasado por estos estado...

lunes, 13 de octubre de 2025

Teoremas de Weierstrass, Bolzano, Rolle y del valor medio.

Teorema de Weiersttrass (Weierstraß):



Sea $f$ una función continua en un intervalo cerrado $[a, b]$, entonces alcanza sus valores máximo y mínimo absolutos en algún punto de ese intervalo.

Teorema de Bolzano:

Sea $f$ una función continua en un intervalo cerrado $[a, b]$, con $f(a) \cdot f(b) < 0 $ ( la función toma valores de signo contrario en los extremos), entonces existe al menos un valor $c \in (a, b)$ tal que $f(c) = 0$.



Propiedad de Darboux:



Si una función $f(x)$ es continua en un intervalo cerrado $[a, b]$ y $k$ es cualquier número entre $f(a)$ y $f(b) \left (k \in ( f(a), f(b) ) \right )$, entonces existe un valor $d$ entre $a$ y $b$ ($ d \in (a, b)$) para el cual $f(d) = k$.

Teorema de Rolle:



Sea $f:[a, b] \to \mathbb {R}$ es una función continua en un intervalo cerrado $\displaystyle [a,b] $ diferenciable en el intervalo abierto $ \displaystyle (a,b) $ y que cumple $ f(a) = f(b) $ entonces existe al menos un punto $c \in (a, b) $ tal que $ f'(c) = 0$.

Teorema del valor medio:



Sea $f:[a, b] \to \mathbb{R}$ una función continua en el intervalo cerrado $[a, b]$ y diferenciable en el intervalo abierto $(a, b)$ entonces existe al menos un punto $c \in (a, b) $ tal que \[ f'(c) = \dfrac{\ f(b) - f(a)\ }{ b - a } \]

No hay comentarios: